- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Smolka, Steffen (3)
-
Foster, Nate (2)
-
Hsu, Justin (2)
-
Kozen, Dexter (2)
-
Silva, Alexandra (2)
-
Albab, Kinan Dak (1)
-
DiLorenzo, Jonathan (1)
-
Gao, Jiaqi (1)
-
Heule, Stefan (1)
-
Kahn, David M. (1)
-
Kappé, Tobias (1)
-
Kheradmand, Ali (1)
-
Kumar, Praveen (1)
-
Timarzi, Muhammad (1)
-
Weitz, Konstantin (1)
-
Yu, Minlan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Smolka, Steffen; Foster, Nate; Hsu, Justin; Kappé, Tobias; Kozen, Dexter; Silva, Alexandra (, Proceedings of the ACM on Programming Languages)
-
Smolka, Steffen; Kumar, Praveen; Kahn, David M.; Foster, Nate; Hsu, Justin; Kozen, Dexter; Silva, Alexandra (, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation)This paper presents McNetKAT, a scalable tool for verifying probabilistic network programs. McNetKAT is based on a new semantics for the guarded and history-free fragment of Probabilistic NetKAT in terms of finite-state, absorbing Markov chains. This view allows the semantics of all programs to be computed exactly, enabling construction of an automatic verification tool. Domain-specific optimizations and a parallelizing backend enable McNetKAT to analyze networks with thousands of nodes, automatically reasoning about general properties such as probabilistic program equivalence and refinement, as well as networking properties such as resilience to failures. We evaluate McNetKAT's scalability using real-world topologies, compare its performance against state-of-the-art tools, and develop an extended case study on a recently proposed data center network design.more » « less
An official website of the United States government
